
Vulnerable Implicit Service: A Revisit

Lingguang Lei¶†‡, Yi He§, Kun Sun‡, Jiwu Jing¶†, Yuewu Wang¶†, Qi Li§, Jian Weng∗

¶Data Assurance and Communication Security Research Center, Chinese Academy of Sciences, China
†State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences

‡George Mason University, Fairfax, VA, USA
§Graduate School at Shenzhen, Department of Computer Science, Tsinghua University, China

∗Jinan University, Guangzhou, China
leilingguang@iie.ac.cn,heyi14@mails.tsinghua.edu.cn,ksun3@gmu.edu,{jingjiwu,wangyuewu}@iie.ac.cn

qi.li@sz.tsinghua.edu.cn,169375@qq.com

ABSTRACT
�e services in Android applications can be invoked either explic-
itly or implicitly before Android 5.0. However, since the implicit
service invocations su�er service hijacking a�acks and thus lead
to sensitive information leakage, they have been forbidden since
Android 5.0. �erea�er since the Android system will simply throw
an exception and crash the application that still invokes services
implicitly, it was expected that application developers will be forced
to convert the implicit service invocations to explicit ones by speci-
fying the package name of the service to be called.

In this paper, we revisit the service invocations by analyzing
two sets of the same 1390 applications downloaded from Google
Play Store before and a�er the the implicit service forbidden policy
is enforced. We develop a static analysis framework called ISA to
perform our study. Our analysis results show that the forbidden
policy e�ectively reduces the number of vulnerable service invo-
cations from 643 to 112, namely, 82.58% reduction. However, a�er
a detailed analysis of the remaining 112 vulnerable invocations,
we discover that the forbidden policy fails to resolve the service
hijacking a�acks. Among the 1390 applications downloaded in May
2017, we �nd 36 popular applications still vulnerable to service hi-
jacking a�acks, which can lead to the loss of user bank account and
VPN login credentials, etc. Moreover, we �nd that the forbidden
policy introduces a new type of denial of service a�acks. Finally, we
discuss the root challenges on resolving service hijacking a�acks
and propose countermeasures to help mitigate the service hijacking
a�acks.

CCS CONCEPTS
•Security and privacy →Mobile platform security; So�ware
security engineering;

KEYWORDS
Implicit Intent; Service Hijacking A�acks; Denial of Service A�acks

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
CCS’17, Oct. 30–Nov. 3, 2017, Dallas, TX, USA.
© 2017 ACM. ISBN 978-1-4503-4946-8/17/10. . .$15.00
DOI: h�p://dx.doi.org/10.1145/3133956.3133975

1 INTRODUCTION
In Android, the applications are divided into components, which can
be conveniently reused by other applications mainly through a mes-
sage passing mechanism called intent in Android Inter-Component
Communication (ICC) model. However, ICC model is becom-
ing the main reason for the explosive component hijacking at-
tacks [4, 6, 16, 31, 33, 34, 41], which cause information leakage or
even �nancial loss.

As one type of components, a service can be invoked by us-
ing either an explicit intent or an implicit intent. Explicit intents
specify the component names or package names explicitly. �ey
are typically used by developers to start components in their own
applications (i.e., same origin apps) or the well-known third party
services, since the developers already know the component name
or package name of the service to be called. In contrast, implicit
intents only describe the type of action to perform and allow the
system to �nd a component on the device to perform the action [17].
For brevity, we call the service invocations through implicit intents
as implicit service invocations and the service invocations through
explicit intents as explicit service invocations. Researchers found
that a�ackers can launch a service hijacking a�ack by exploiting
the implicit service invocations [10]. By cra�ing a malicious ap-
plication that provides a service matching to an implicit intent
requested from a victim application, the a�acker may make the
system choose its malicious service from multiple matching ser-
vices to serve the victim application under the condition that the
malicious service has the highest priority in the service list.

To remove the vulnerabilities introduced by the implicit service
invocations, since Android 5.0 (API level 21), Google banned the ser-
vice components from being invoked through implicit intents [19].
When a service is invoked implicitly, the application will simply
crash. By enforcing this forbidden policy, Google expects to resolve
the service hijacking a�acks by forcing application developers to
convert their implicit service invocations to explicit ones.

In this paper, we evaluate the impacts of the implicit service
forbidden policy on application developers and its e�ectiveness on
removing vulnerable service invocations by analyzing two sets of
the same applications downloaded from Google Play Store before
and a�er the forbidden policy is enforced. Our study focuses on
answering two questions. First, how well is the implicit service
forbidden policy being accepted by application developers? A sta-
tistics analysis [28] shows that 78.1% applications invoking the

Session E2: Securing Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1051

service components and in which about 30% services are started
through implicit intents. Second, can the forbidden policy resolve
the service hijacking a�acks in Android 5.0 and higher?

To answer these two questions, we develop an analysis frame-
work called ISA 1 to systematically study the vulnerabilities in
service invocations. First, we employ android-apktool [2] as a pre-
processor to convert the APK �les into smali �les, since smali codes
do not require disassembling Java code and avoid introducing in-
accuracy into the results. Next we develop a static intent analyzer
to discover all intents that are consumed for invoking the service
components in the smali codes. We develop a reachability veri�er to
check if the service invocations found by our static intent analyzer
are reachable from certain entry points of the apps. We perform a
depth �rst search to traverse the code and check if there is a calling
chain from an entry-point to the service invocation APIs. Since we
do not need to save the edges and nodes of the full call-graph, the
reachability veri�er can achieve a good performance. Finally, we
develop an vulnerable service invocation analyzer to identify the
vulnerable service invocations.

Next we apply our analysis framework on two sets of the same
1390 popular applications downloaded from Google Play Store
before and a�er the implicit service invocations are forbidden. We
denote the application dataset downloaded between August 2014
and October 2014 as “Old Apps”, since the forbidden policy has
not been enforced. We denote the application dataset downloaded
in May 2017 as “New Apps”, since the forbidden policy has been
enforced for 30 months.

Our experimental results show that the forbidden policy e�ec-
tively reduces the number of vulnerable service invocations from
643 to 112, namely, 82.58% reduction. However, the forbidden policy
fails to resolve all service hijacking a�acks - 57 among the 112 in-
vocations make 36 applications still vulnerable to hijacking a�acks,
which can be misused to steal user bank account or VPN login
credentials. Since the analyzed applications are the most popular
applications from Google Play Store, more than 500,000,000 users
could be impacted by these a�acks.

A�er a detailed analysis of the remaining 112 vulnerable service
invocations, we discover that the key reasons for the remaining
vulnerable invocations are two-fold. �e �rst one is the di�culty
in determining the package names for certain third party services,
due to the various types of third party services and the di�culty on
verifying the trustworthy of the apps. �e vulnerable invocation
reduction from 643 to 112 is due to the resolve of the same origin
services or the well-known Google third party services, which
are easy for the developers to determine the package names or
for the Android system to identify the suitable applications (e.g.,
se�ing higher priority to the same origin and the Google services).
However, for the other not well-known third party services, the
reduction rate is only 23.46%. We call this type of third party service
as “the other third party service”, which is the main challenge to
resolve the service hijacking a�acks.

To avoid explicitly specifying the class or package name for
the other third party service, developers are more frequently call-
ing the queryIntentServices() and resolveService () APIs [20] to
help convert implicit intents into explicit intents. When calling

1ISA stands for Implicit Service Analysis.

queryIntentServices (Intent intent, int flags) API, the
Android system returns a list of services installed on the mo-
bile phone matching the implicit intent in the parameter. �e
resolveService (Intent intent, int flags) API returns the
�rst service in the service list provided by queryIntentServices
(). Since the matching rules of queryIntentServices() is
the same as the vulnerable ones used by bindService() and
startService(), the service invocations through explicit intents
converted by queryIntentServices() and resolveService()
may still su�er service hijacking a�acks on Android 5.0 and higher.
Moreover, we �nd that a�ackers may misuse this ranking rules to
disable a victim service invocation or crash a victim application.
We call the service invocations through explicit intents converted
by these two APIs as “the resolved service invocations”.

�e second reason lies in the di�culty for all the developers
to correctly update the applications in time, especially when the
services are invoked through outdated SDK or reuse of the out-
dated sample codes. For example, among the 112 vulnerable service
invocations in “New Apps”, 62 are residue implicit invocations, and
more than half are Google or same origin services. 79.03% residue
ones remain implicit since they are invoked through outdated SDKs
or reusing outdated sample codes, in which the services are invoked
implicitly. �ere are even some SDKs in which the services are in-
voked implicitly in the latest versions. A�er analyzing the Android
source codes, we �nd that when an application’s targetSdkVersion
a�ribute is set lower than 21 (i.e., API Level of Android 5.0), implicit
service invocations are still allowed even on Android 5.0 and higher
platforms. 61.29% implicit service invocations in “New Apps” are
vulnerable to hijacking a�acks rather than app crash.

According to our analysis results, we propose several counter-
measures to further mitigate the service hijacking a�acks. We
suggest an optimization in the ranking rules of the implicit or re-
solved service invocations, i.e., giving a higher priority to the same
origin and the Google third party service. �is simple optimization
could reduce 44.64% vulnerable service invocations in the “New
Apps”, among which 72% are vulnerable to hijacking a�acks. For
the other third party service, we propose a market-based service
ranking algorithm to increase the di�culty for a�acker to manip-
ulate the ranking of the service list. Several serious unresolved
a�acks in “New Apps”, e.g., stealing the VPN login credentials,
could be defeated with this solution. We also discuss two other
countermeasures, namely, signature-based veri�cation and SDK
hardening, which are promising to mitigate the service hijacking
a�acks.

2 BACKGROUND
2.1 Service Components and Intents
A service is an Android Application component that performs op-
erations in the background without a user interface. Each Service
has a corresponding <service> declaration in the application Mani-
fest.xml �le and includes an a�ribute named exported to de�ne if
the service can be started in another application. If the exported
a�ribute is set to false, the service can only be started by compo-
nents in the same application. In addition, the service may de�ne
one or more < IntentFilter > to specify the types of intents that
the service can respond to. �ere are two ways to allow a service be

Session E2: Securing Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1052

started by other applications. First, its exported a�ribute should be
set to true. Second, when the exported a�ribute is not set explicitly,
at least one Intent Filter is de�ned.

Service components can be started using either startService() or
bindService() API functions. �e startService() function performs
a single operation with no return values, and the started service
runs in the background inde�nitely even if the caller component is
destroyed. �e bindService() function provides an enriched commu-
nication interface for the caller to interact with the service, but the
bound service will be destroyed if all callers have been destroyed.

A messaging object named Intent is passed into startService()
and bindService(). �ere are two types of intents, explicit intent
and implicit intent. Explicit intents specify the component name or
package name in the intent explicitly. In contrast, implicit intents
only specify some general information, such as the action to be
performed, the data to operate on, or the category of the action etc.,
and delegate the task of evaluating the matching components to the
Android system. For a service to be started by an implicit intent, the
service should de�ne one or more Intent Filters, which specify the
types of intents that the service can respond to. A service matches
an implicit intent only when the action, data, and category de�ned
in the intent object match one of the Intent Filters de�ned by the
service. When starting service components through an implicit
intent, the Android system calculates the matching values of all
the Intent Filters to this intent. If one intent matches multiple
services, the system selects the proper service automatically in the
background.

2.2 SDK Version
Each application has a corresponding <uses-sdk> declaration [22]
in its Manifest.xml �le, which de�nes the application’s compatibility
with one or more versions of the Android platform, by means of an
API Level integer. In total, three a�ributes could be de�ned in the
<uses-sdk> declaration, i.e., minSdkVersion, maxSdkVersion, and
tarдetSdkVersion. �e �rst two a�ributes designate the minimum
and maximum API Levels designed for the application to run. In
other words, installing the application on a system with the API
Level lower than minSdkVersion or higher than maxSdkVersion
is not allowed. minSdkVersion should be declared in each app,
while maxSdkVersion is no longer checked or enforced beyond
Android 2.0.1. tarдetSdkVersion designates the API Level that the
application targets at, and its default value is set to the value of
minSdkVersion. �is a�ribute informs the system that the applica-
tion has been tested against the target SDK version and the system
should not enable any compatibility behaviors to maintain the ap-
plication’s forward-compatibility with the target version. �e appli-
cation is still able to run on older versions down tominSdkVersion.

2.3 Service Hijacking Attacks
Originally implicit intents are provided by Android to help ease
the developer’s working load with more �exibility. For instance,
when an application needs some complex services such as image
enhancement or object detection, instead of coding our own version
of services, we can pass on the operation request and image data to
the Android system, which will pick an available application, e.g.

OpenCV Manager, that has implemented those services and opens
to third-party apps.

Later, researchers found that implicit service invocations are not
secure and may su�er from service hijacking a�acks [10]. Suppose
one application de�nes a service A that includes at least one Intent
Filter and can be called through implicit intent by other apps. An
a�acker can launch service hijacking a�acks by cra�ing a malicious
application that provides a service A* to match the same implicit
intent but with higher priority. When a victim application sends the
requests for calling service A to the Android system, the system is
responsible for automatically selecting the service with the highest
priority (i.e., the malicious service A*) from multiple matching
services and uses it to serve the victim app.

Android sorts service priority using �ve Intent Filters’ �elds,
namely, priority, per f erredOrder , isDe f ault , match, and system,
in the decreasing priority order.

• priority is the declared priority of this Intent Filter. �e
value of priority must be greater than -1000 and less than
1000, higher value means higher priority. �e default value
is 0.

• pre f erredOrder represents the user’s preference. A higher
value means higher priority; however, currently this value
is set to the default value 0 for all services and cannot be
changed.

• isDe f ault denotes if an Intent Filter has speci�ed the In-
tent.CATEGORY DEFAULT a�ribute, which means a default
action can be performed.

• match is the system’s evaluation on how well the Intent
Filter matches the intent, calculated according to �ve Intent
Filter a�ributes including action, cateдories , type , data,
and scheme .

• system de�nes if it is a service de�ned in a system appli-
cation. A system application has a high priority than user
applications.

�e three �elds priority, isDe f ault , andmatch are related to the
a�ributes set in the Intent Filter and thus can be misused by mali-
cious developers to cra� a malicious service with higher priority
to hijack a victim service. When there are multiple services with
the same matching value to an implicit intent, the services will be
ranked according to alphabetical order of the package names. �us,
the a�acker may misuse the package name to give its service a
higher priority. Since Android 5.0, Android suggests to use explicit
intents only, and it claims that when a service is invoked through
implicit intent, the system simply throws an exception and the
application invoking the service implicitly will crash [19].

3 METHODOLOGY
We develop an analysis framework called ISA to systematically
analyze the vulnerabilities in service invocations before and a�er
the implicit service invocations are forbidden. As shown in Figure 1,
the ISA framework consists of four major components: Preprocessor,
Static Intent Analyzer, Reachability Veri�er, and Vulnerable Service
Invocation Analyzer. �e preprocessor is responsible for converting
APK �les into smali �les to facilitate further analysis. �e static
intent analyzer then processes smali �les to �nd out all explicit and
implicit intents being consumed for invoking service components.

Session E2: Securing Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1053

Static Intent Analyzer
Apk file

Smali
Files

manifest.xml

Preprocessor

Intent
Constructor
Database

Intent
Value

Database

Intent
Constructor

Finder

Data Flow
Analyzer

Vulnerable
Service

Invocation
Analyzer

Implicit
Invocation

Finder

Resolved
Invocation

Finder

Invocation
Relationship

Analyzer

Reachable
Intent

Database

Reachability
Verifier

Apk file

Figure 1: �e ISA Analysis Framework

Next, the reachability veri�er �lters out service invocations in the
dead codes and provides a database that only contains reachable ser-
vice invocations. Finally, the vulnerable service invocation analyzer
�nds out all the vulnerable service invocations.

3.1 Preprocessor
Android applications are packaged as APK �les, which are ZIP com-
pressed �le containing compiled bytecode and additional metadata
such as manifest.xml �le and resource �les. To reduce the failures
on disassembling the Java code [13, 24], we use android-apktool
tool [2] to unpack the APK �les and obtain the corresponding smali
�les and manifest.xml �le. More importantly, the smali code con-
tains almost all necessary information to facilitate the data �ow
analysis. For instance, for the override functions with the same
function name and di�erent parameters, since the function proto-
type can be provided when the function is invoked, we can precisely
trace the data �ow across the function boundary.

3.2 Static Intent Analyzer
We conduct a static data �ow analysis on the smali �les to discover
all explicit and implicit intents that are consumed for invoking the
service components. It contains two modules, Intent Constructor
Finder and Data Flow Analyzer. �e intent constructor �nder is
responsible for obtaining a list of methods in which an Intent is
constructed and then recording those methods in an Intent Con-
structor Database. �e data �ow analyzer conducts a static data �ow
analysis to �nd all intents that are used to invoke services through
startService() and bindService(), and then records the intent
values in an Intent Value Database.

3.2.1 Intent Constructor Finder. As the starting point of our
analysis, this module �nds the list of all methods in which new
intents are constructed. It can be done by simply grepping the intent
construction code (i.e., “new-instance v*, Landroid/content/Intent;”)
in the smali codes.

3.2.2 Data Flow Analyzer. �e data �ow analyzer parses the
methods in the intent constructor database and records the intents

for invoking services in an intent value database. Figure 2 shows the
algorithm of data �ow analysis on Intents for each method in the
intent constructor database. �e process of intents can be divided
into two categories: intra-method intent processing and inter-method
intent processing.

DataFlowAnalyzer (SmaliFilePath, Method, IntentList)

Begin
If (IntentList Not Null) TemporaryIntentList.Add(IntentList);

//Read From the Begin Of the Method Line By Line
While ((line = ReadNext (SmaliFilePath:Method) != End of Method)
{

 Switch line:
Case: Invoke Intent Create Functions TemporaryIntentList.Add;
Case: Invoke Intent Process Functions TemporaryIntentList.Update;
Case: Invoke Intent Consume Functions Intent Value Database.Add;
Case: Invoke Auxiliary Functions Save / Update Related Variables
Case: Invoke Method1 (Intent1 in TemporaryIntentList):

SmaliFilePath1=GetSmaliFilePath(Method1);
DataFlowAnalyzer(SmaliFilePath1, Method1,Intent1);

Case: Return Intent1 in TemporaryIntentList:
 MethodReturnIntentList.Add(Method,Intent1);
 Store Method’s caller methods into the Intent Constructor Database

Case: Put Intent1 in TemporaryIntentList Into A Global Variable GVar
GlobalValueList.Add(GVar,Intent1);

 Store methods in which GVar is Get into the Intent Constructor Database
Case: Get GlobalVariable GVar Not In GlobalValueList

Find MethodList in Which GVar is Put
Foreach(Method1 in MethodList)
{

SmaliFilePath1=GetSmaliFilePath(Method1);
DataFlowAnalyzer(SmaliFilePath1, Method1,NULL);

}
Case: Invoke Method1 in MethodReturnIntentList

Intent1=MethodReturnIntentList.get(Method1);
TemporaryIntentList.Add;

Case: Get GlobalVariable GVar in GlobalValueList
Var=GlobalValueList.get(GVar);
if(Var is Intent) TemporaryIntentList.Add;

}
End

Figure 2: �e Algorithm of Data Flow Analysis.

Session E2: Securing Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1054

Intra-Method Intent Processing. Since we need to obtain
the intent a�ributes such as action, component name, package
name, and class name, rather than the data passed through
the intent such as the URI data, we construct a framework
model focusing on Android classes and APIs that handle re-
lated intent a�ributes. For other APIs encountered during the
data �ow analyzing, we only record the APIs invoked. In to-
tal, we identify �ve Android classes that are critical for the
analysis of intent a�ributes, namely, android.content.Intent,
android.content.ComponentName, android.content.Context,
java.lang.Class, and java.lang.String, as shown in Table 1.

Table 1: Intent-related Classes and APIs

Class API Prototype Category
android.content.Intent Intent(Context, Class) Intent Creating

Intent(Intent) Functions
Intent(String)
Intent(String, Uri, Context, Class)
Intent(String, Uri)
Intent()
setClass(Context, Class) Intent Processing
setClassName(String, String) Functions
setClassName(Context, String)
setComponent(ComponentName)
setPackage(String)
setAction(String)
queryIntentServices(Intent,Flag)
resolveService()(Intent,Flag)

android.content.ComponentName ComponentName(String, String) Auxiliary
ComponentName(Context, String) Functions
ComponentName(Context, Class)
createRelative(String, String)
createRelative(Context, String)
un�a�enFromString(String)

java.lang.Class getClassName()
getPackageName()
getShortClassName()
getCanonicalName()
getName()
getClass()
forName(String)

java.lang.String Several String Processing Functions
android.content.Context getPackageName()

bindService(Intent,ServiceConnection,int) Intent Consuming
startService(Intent) Functions

�e life time of an intent variable can be divided into three
phases, intent created, intent processed and intent consumed. Ac-
cordingly, the list of APIs in Table 1 can be divided into intent
creating functions, intent processing functions, and intent con-
suming functions. First, the intent creating functions include all
constructor functions of the intent class. When encountering these
functions, a new intent will be stored into a temporary list named
TemporaryIntentList. We ignore all URI variables passed in as pa-
rameters. Second, the intent processing functions include con-
�guration functions used to set the a�ributes of the intent. We
focus on the a�ributes related to our analysis, such as action,
class, package, and component, etc. When these functions are
invoked, the a�ributes of the corresponding intent in the Tempo-
raryIntentList may be updated. If the intent is processed through
queryIntentServices() or resolveService(), it will be marked
in the TemporaryIntentList. �ird, the intent consuming functions
include the functions that consume an intent to start a service com-
ponent. When encountering these functions, the corresponding
intent in the TemporaryIntentList will be stored into the intent
value database along with the invocation position of the intent
consuming functions.

In addition, we identify some auxiliary functions that are related
to the a�ributes of intents and list them in Table 1. For instance,
the functions in android.content.ComponentName class are used

to construct a new component name, and the results will be used
to set the component name of an intent. As another example, the
functions in java.lang.Class class are used to get the name of a
class, and the results are usually used to set the class name of an
intent. Since most a�ributes of the intent is described by a string,
the string processing functions are also considered.

Inter-Method Intent Processing. �ere are four cases in
which an Intent’s data �ow will come across the method boundary,
marked as bold in Figure 2. First, when an intent in the Tempo-
raryIntentList is passed to another method as a parameter, the data
�ow will go into the new method, which will add the intent in
its own TemporaryIntentList. Second, when one method contain-
ing an intent in the TemporaryIntentList is returned from another
method, we insert the corresponding method name and the return
value in a MethodReturnIntentList for each application. In the
meantime, all methods invoking this method will be added into the
intent constructor database. Figure 3 shows a sample code from
an application named “aa.apps.dailyre�ections-1”. In code snippet
(a), an intent (we call it Intent1 a�erwards) is created and returned
in one method zzqS(). When analyzing the code, Intent1 is in-
serted into method zzqS()’s TemporaryIntentList. In the mean
time, <zzqS(), Intent1> key value pair is inserted into the app’s
MethodReturnIntentList. Next we will search the smali codes to
�nd out all the methods invoking zzqS() and then insert them
into the intent constructor database. As shown in code snippet
(b), zzqS() is invoked in method zzcH(), therefore method zzcH()
is inserted into the intent constructor database. When analyzing
the method zzcH(), Intent1 will be inserted into method zza()’s
TemporaryIntentList, since the return value of method zzcH() is
passed into the method zza(). Finally, in method zza() as shown
in code snippet (c), Intent1 is consumed by the bindService()
function to start a service component. Now Intent1 is inserted into
the intent value database.

(a) Intent is constructed and returned in a method zzqS()

.method public zzqS()Landroid/content/Intent;
 ...
 // Intent is constructed
 new-instance v0, Landroid/content/Intent;
 iget-object v1, p0, Lcom/google/android/gms/common/internal/zzm\$zza;->zzSU:Ljava/lang/String;
 //Set action of the Intent
 invoke-direct {v0, v1}, Landroid/content/Intent;-><init>(Ljava/lang/String;)V
 const-string v1, "com.google.android.gms"
 //Set package name
 invoke-virtual {v0, v1}, Landroid/content/Intent;->setPackage(Ljava/lang/String;)Landroid/content/Intent;
 move-result-object v0
 …
 // Return the Intent
 return-object v0

(b) zzqS() is invoked to fetch the Intent in another method zzcH()

.method public zzcH(Ljava/lang/String;)V
 …
 //Intent is fetched through calling zzqS()
 invoke-virtual {v2}, Lcom/google/android/gms/common/internal/zzm\$zza;->zzqS()Landroid/content/Intent;
 move-result-object v3
 …
 //Intent is passed into zza() method
 invoke-virtual/range {v0 .. v5},Lcom/google/android/gms/common/stats/zzb;->zza(Landroid/content/Context;

Ljava/lang/String;Landroid/content/Intent; Landroid/content/ServiceConnection;I)Z
 …

(c) In method zza(), the Intent is consumed by the bindService() method
 …
 //Intent is consumed by the bindService() method
 invoke-virtual {v2, v1, v3, v4},
 Landroid/content/Context;->bindService(Landroid/content/Intent;Landroid/content/ServiceConnection;I)Z

Figure 3: Sample Code of Returned Intent.

Session E2: Securing Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1055

�ird, when one intent in the TemporaryIntentList is stored
into a global variable, the key and value for this global vari-
able is stored into a key value mapping list named GlobalVal-
ueList for each application. In the meantime, all methods con-
suming this global variable will be added into the intent construc-
tor database. �ere are several ways to create a global variable
in Android application, such as de�ning a global static variable
in the class and using the APIs in SharedPreferences [21] for
applications to conveniently store, read, and write a key-values
collection. Figure 4 shows a sample code from an application
named com.tvrsoft.santabiblia-13. In Figure 4 (a), one in-
tent is created in one method and saved into the global variable
Lcom/google/android/gms/auth/GoogleAuthUtil;->Dp:
Landroid/content/Intent;. In another method, the intent is ob-
tained from the global variable and used by the bindService()
function to start a service component, as shown in Figure 4 (b).

Fourth, when an intent is obtained from a global variable not
included in the GlobalValueList, we search and �nd all methods
in which the global variable is put, perform data �ow analysis on
each method, and set global variable obtained in each method as a
potential value of the intent.

(a) Intent is constructed and saved into a global variable in method ppbQ()

.method public ppbQ()V

 // Intent is constructed
 new-instance v0, Landroid/content/Intent;
 invoke-direct {v0}, Landroid/content/Intent;-><init>()V
 const-string v1, "com.google.android.gms"

 // PackageName is set for the Intent
 invoke-virtual {v0, v1}, Landroid/content/Intent;->setPackage(Ljava/lang/String;)Landroid/content/Intent;
 move-result-object v0
 sget-object v1, Lcom/google/android/gms/auth/GoogleAuthUtil;->Dn:Landroid/content/ComponentName;

 // ComponentName is set for the Intent
 invoke-virtual {v0, v1},
Landroid/content/Intent;->setComponent(Landroid/content/ComponentName;)Landroid/content/Intent;
 move-result-object v0

 // Intent is saved into a global variable
Lcom/google/android/gms/auth/GoogleAuthUtil;->Dp:Landroid/content/Intent;
 sput-object v0, Lcom/google/android/gms/auth/GoogleAuthUtil;->Dp:Landroid/content/Intent;

(b) In method ssO(), Intent is obtained from the global variable and consumed by the bindService()

.method public ssO()V

 // Intent is fetched from a global variable
 sget-object v3, Lcom/google/android/gms/auth/GoogleAuthUtil;->Dp:Landroid/content/Intent;

 const/4 v4, 0x1

 invoke-static {v1, v3},
 // The fetched intent is consumed by the bindService() method
 invoke-virtual {v1, v3, v2, v4},
Landroid/content/Context;->bindService(Landroid/content/Intent;Landroid/content/ServiceConnection;I)Z

Figure 4: Sample Code of Storing Intent in a Global Variable.

In all above four cases, if one a�ribute of an intent (or the intent
variable) depends on certain input parameter of a callee method, we
need a backward search for the caller method and start the analysis
on the intent from that method again, until we can determine the
a�ribute (or intent) values. If one a�ribute value of the intent (or
the intent variable) is a return value of an abstract method, the
smali code only depicts the name of the abstract value. In this case,
we need to �nd all implementation methods and set return values
of all methods as the potential values of the a�ribute (or intent). If
one a�ribute value of the intent (or the intent variable) is a return

value of a class inherited from a super class, the smali code only
depicts the name of the inheritance class while the implementation
is in the super class, we need to �nd the implementations method
in the super class and set the return values of the method as the
value of the a�ribute (or intent).

Figure 2 shows that the data �ow analysis is a depth �rst re-
cursive algorithm. We set two limits to prevent the analysis from
entering a dead loop and ensure the algorithm can �nish in limited
time. First, we empirically set the nesting level to 5 in our imple-
mentation, since through manually verifying applications in the
ANDROID WEAR category, 5 is large enough to analyze the intent
a�ributes. Second, when a method is recursively invoked by itself,
we will only analyze the method once.

3.3 Reachability Veri�er
Since we only concern about the vulnerable service invocations
that can be truly triggered in the apps, we develop a reachability
veri�er to check if the service invocations found by our static intent
analyzer are reachable from certain entry points of the apps. All
intents related to the reachable service invocations are saved into
a Reachable Intent Database. First, we need to �nd all the applica-
tion entry points; however, di�erent from traditional Java Apps,
Android applications are composed of four types of components
rather than including an entry point method such as main(), and
all the component lifecycle methods and callback methods can
serve as entry-points for Android apps. To solve this problem, sim-
ilar to FlowDroid [4], we generate a dummyMain() for each App,
where the dummyMain() includes all lifecycle methods and callback
methods.

�en we build the inter-procedure call-graph for the application
and traverse all call-graph paths to verify the reachability of the
service invocations. If we can �nd a path from one entry point to
the position of invoking startService() or bindService(), the service
invocation will be marked as reachable. IC3 [33] provides two
algorithms, spark [26, 37] and CHA [11], to construct the inter-
procedure call graph on Android apps. However, when we run the
two algorithms to build the call graph on 1390 popular applications
from Google Play Store, we �nd that they cannot �nish or provide
any useful results on 38% applications within 10 hours. Similar
results are also reported in Mud�ow [5].

Fortunately, our reachability analysis does not need to build a
full call-graph. By performing depth �rst search to traverse the code
directly using CHA algorithm, we do not need to save the edges
and nodes of call-graph. When there is a calling chain from the
entry-point to the service APIs, we consider these APIs as reachable
and they can be triggered at certain points. In this way, we can
�lter out the service invocations in the dead code that will never
be triggered.

3.4 Vulnerable Service Invocation Analyzer
�e reachable intent database generated by the reachability veri�er
includes both explicit and implicit intents, so the vulnerable service
invocation analyzer consists of three modules to �lter out explicit
service invocations and provide further analysis on vulnerable
service invocations. First, the Implicit Invocation Finder �nds out
the services invoked via implicit intents, i.e., intents without se�ing

Session E2: Securing Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1056

package, class, or component. Second, the Resolved Invocation
Finder �nd the service invocation points, which are started through
intents processed by queryIntentServices() and resolveService().
Without being processed correctly, these service invocation points
may introduce service hijacking a�acks or DoS a�acks. Detail can
be found in Section 4.3. �ird, the Invocation Relationship Analyzer
determines if a service invocation is for same origin service or
third-party service by comparing the intent values with the services
de�ned in the manifest.xml. If the class or action a�ribute of an
intent is de�ned in the manifest.xml, it is a Same Origin invocation.
Implicit intents for the same origin services can be easily converted
to explicit ones by the application developers; while the third-
party services may be correctly converted if those services are
well-known, such as services provided by Google.

�e vulnerable service invocation analyzer generates three anal-
ysis results including (i) a list of implicit service invocation position
and the corresponding intent value; (ii) a list of service invoca-
tion position and corresponding intent value, where the intent
used to start the service is processed by queryIntentServices() and
resolveService(); and (iii) the relationship of each service invoca-
tion, i.e, if the service invoked is de�ned in the same application or
by a third party application.

4 EVALUATION
In this section, we �rst depict the application datasets used in our
study. �en, we evaluate the e�ectiveness of removing vulnerable
service invocation by directly banning implicit invocations. Finally,
we report the unsolved vulnerable service invocations.

4.1 Android Application DataSets
We focus on analyzing the applications in Google Play Store [18].
To study the real impacts of banning implicit service invocations,
we download two datasets, one before the implicit service invoca-
tion was banned and one a�er the implicit service invocation had
been banned. First, we downloaded the top 100 applications for all
the 34 application categories from Google Play store in May 2017,
which include 3251 applications in total. A�er removing duplicated
applications in more than one categories, we have 3156 apps.

We meet some challenges to collect applications that were up-
loaded to Google Play Store before the implicit invocation is forbid-
den (i.e., November 2014), since Google Play Store only provides the
newest-version application downloads. Fortunately, we �nd an on-
line application archive provided by the PlayDrone Project [1, 39],
which includes 1,490,097 Android applications crawled from Google
Play Store in year 2014.

Among the 3156 applications downloaded in 2017, we can �nd
1390 applications in the PlayDrone dataset. �erefore, we obtain
two datasets containing the same set of 1390 popular applications
with two di�erent versions. We denote the application dataset
downloaded from Google Play Store in May 2017 as “New Apps”,
as they are downloaded a�er the implicit service invocation has
been banned almost 30 months. 99.4% applications in the “New
Apps” dataset have been updated a�er implicit service invocation
was forbidden. We name the application dataset downloaded from
PlayDrone archive as “Old Apps”, as they are downloaded from
Google Play Store between August 2014 and October 2014, i.e., less

than three months before the implicit service forbidden policy is
enforced.

4.2 E�ectiveness on Removing Vulnerable
Service Invocations

We call the service invocations vulnerable to hijacking a�acks
or DoS a�acks as Vulnerable Service Invocation , which includes
implicit service invocations and vulnerable resolved service invoca-
tions. �e former ones are services invoked through implicit intents.
�e later ones are services invoked via explicit intents converted
by calling queryIntentServices() or resolveService () APIs, where the
developers do not verify the package names when adopting the
return values of these two APIs. Details of the vulnerable service
invocations in the “New Apps” will be discussed in Section 4.3.

In this section, we show how well the forbidden policy reduces
the vulnerable service invocations. In general, the service invoca-
tion could be divided into two categories, the same origin and third
party. �e former one represents the invocation of service de�ned
in the same app; while the later one describes the invocation of
service de�ned in a di�erent app, including the well-known Google
third-party services and various other third-party services.

Figure 5: Reduction of Vulnerable Service Invocations

Figure 5 shows that the numbers of vulnerable service invoca-
tions in the 1390 applications are 643 and 112, before and a�er the
implicit service invocation is forbidden, respectively. We can see
the forbidden policy successfully reduce 82.58% vulnerable service
invocations. By carrying out a detailed analysis of the vulnerable
invocations, we �nd that most reduction is achieved by resolving
the same origin services (from 304 to 18, 94% reduction) and Google
third party services (from 258 to 32, 87.6% reduction). However,
the decreasing in the other third party services is very limited,
only from 81 to 62 with a 23.46% reduction. Intuitively, it is easy
for the developers to convert the same origin implicit service in-
vocation into an explicit one by se�ing the package name with
the return value of getPackageName() API. It is also easy for the
developers to determine the package names for the Google ser-
vices, since the number of involved packages is limited and well

Session E2: Securing Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1057

known. Actually, among the original 47.28% vulnerable invocations
targeting at Google services, only 3 packages are involved, which
are Google Play Service (“com.google.android.gms”), Google Play
Store (“com.android.vending”), and Google Service Framework
(“com.google.android.gsf”). �e challenges are to determine the
package names for the other third party services, since various pack-
ages could be involved in those service invocations. For example,
though this type occupies only 12.6% in “Old Apps”, it involves 23
di�erent services, and 2 dynamic services whose “action” a�ributes
are extracted from a received message, e.g., a received intent.

Figure 6: Increment of Resolved Service Invocations.

In addition, we observe that resolved service invocations are used
more frequently in the “New Apps”, and most of them are used
to determine the package name for the other third party services.
As shown in Figure 6, though the number of vulnerable service
invocations reduces from 643 to 112, the number of resolved ser-
vice invocations increases from 17 to 53, where 14 (82.35%) and 42
(79.2%) of the resolved service invocations are targeting at the other
third party services for “Old Apps” and “New Apps”, respectively.
When it is di�cult to determine the package name for those ser-
vices, queryIntentServices() and resolveService() are called more
frequently to help obtain the matching package name automati-
cally, especially a�er the implicit service invocation is forbidden.
Among the 53 resolved service invocations in “New Apps”, 14 are
converted from implicit service invocations in “Old Apps”, 8 are
residue resolved service invocations from “Old Apps”. In addition,
the number of service types involving resolved service invocations
increases from 4 to 17, and the number of involved applications
increases from 16 to 31.

4.3 Vulnerable Service Invocations In “New
Apps”

In this section, we discuss the remaining vulnerable service invo-
cations in the “New Apps”, including implicit service invocations
and vulnerable resolved service invocations. In total, 62 implicit
service invocations and 50 vulnerable resolved service invocations
are involved, and the a�acks could be divided into two categories,
i.e., service hijacking a�acks and denial of service a�acks. �e

implicit service invocation might su�er hijacking a�acks when the
app’s tarдetSdkVersion is lower than 21, or else it will cause the
application to crash (i.e., DoS a�acks). And most of the resolved
service invocations also su�er a�acks, since they are usually used
when the package names of the services are di�cult to specify. Fig-
ure 7 shows that 100% and 94.34% resolved service invocations are
vulnerable in the “Old Apps” and “New Apps”, respectively. Among
the 53 resolved service invocations in the “New Apps”, only 3 are
not vulnerable, as they verify the package name when adopting the
results returned by queryIntentServices() and resolveService ().

Figure 7: Distribution of the Resolved Service Invocations

Service Hijacking Attacks. Implicit service invocations
are vulnerable to hijacking a�ack when the application’s
tarдetSdkVersion is lower than 21. Resolved service invocations
are also vulnerable to hijacking a�ack. Since the ranking rules of
queryIntentServices(), bindService() and startService() could be ma-
nipulated by the a�ackers as described in Section 2.3. �e statistics
data of the “New Apps” shows that it is still easy for an a�acker to
launch the service hijacking a�ack. Among the 1390 “New Apps”,
722 applications export 2058 services that contain at least one Intent
Filter, which may be started through implicit intent. 4.6% appli-
cations contain reachable implicit or resolved service invocation
codes. Among the 2058 exported services, only 685 services set
the priority a�ributes in at least one Intent Filter, and only 72 ser-
vices set the category to Intent.CATEGORY DEFAULT. Also, among
the 685 services, 672 (98.1%) services set the priority value to -500
which is lower than the default value, and only 2 services set to the
highest value 1000.

We �nd 57 service invocations in “New Apps” vulnerable to
service hijacking a�acks, and 22 service types and 36 applications
are involved in these vulnerable service invocations. 38 of the 57
are implicit service invocations with the apps’ tarдetSdkVersion
lower than 21, and the remaining 19 are resolved service invoca-
tions, in which the developers simply bind/start the �rst service
or all services returned by queryIntentServices(). In addition, we
�nd another 31 resolved service invocations that can be hijacked if
queryIntentServices() API only returns one matching service that is
installed by the a�acker. When more than one matching services

Session E2: Securing Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1058

Table 2: Sampled Service Hijacking Attacks in “New Apps”

AppName Involved Service Consequence Installations Triggerring Event
jp.nav* 500,000,000 - 1000,000,000

com.iman* 100,000,000 - 500,000,000
com.tabta* Google In-App Purchase Sensitive Info Leakage 1,000,000 - 5,000,000 App Startup
com.pico* e.g. bank accounts. 500,000 - 1,000,000

mobi* 1,000,000 - 5,000,000 App Startup
(First Time)

com.win* Samsung In-App Purchase 10,000,000 - 50,000,000 App Startup
(On Samsung Platform)

com.cis* VPN Connecting Sensitive Info Leakage
e.g. VPN Login Credentials. 1,000,000 - 5,000,000 App Startup

com.zen* VPN Connecting Same As Above 500,000 - 1,000,000 User Login
com.fox* Google Messages Transfer Sensitive Info Leakage 5,000,000 - 10,000,000 App Startup
com.syg* 1,000,000 - 5,000,000 User Login

are returned, the application will either throw an exception or stop
starting/binding the service. Table 2 lists several sampled service
hijacking a�acks in “New Apps”. For example, in-app purchasing
service is an important service that provides a simple interface for
sending in-app billing requests and managing in-app billing transac-
tions. Several popular applications might su�er in-app purchasing
service hijacking a�acks, so it may cause sensitive information
such as bank accounts being leaked. Hijacking the VPN connecting
services might cause leakage of sensitive information such as VPN
login credentials and data transferred through VPN. As a service
used to transfer data between mobile devices and servers, Google
Messages Transfer also su�ers sensitive information leakage threat.
As shown in the column 4 of Table 2, since all these applications
are very popular in the Google Play Store, more than 500,000,000
users may be involved. �e last column depicts when will these vul-
nerable invocations be triggered, and 5 of them could be triggered
when the applications start up.

In addition to the mentioned a�acks in Table 2, all service hijack-
ing a�acks will make it easier for the a�ackers to launch the GUI
phishing a�acks [9]. �rough service hijacking, the a�acks could
obtain the running state information of an application and could
then pop up the phishing user interface accordingly. For example,
a�er an application named “de.a�*” being hijacked, the a�acker
could pop up a phishing login UI to steal user’s login credential.

Denial of Service Attacks. Since current implicit service for-
bidden policy enhances service security at the expense of sacri�cing
service availability, it introduces a new type of denial of service
a�acks. First, all direct implicit service invocations in the applica-
tions with tarдetSdkVersion higher than 21 may cause applications
crash. Second, when queryIntentServices() returns a list of more
than one services matching to the speci�c implicit intent, we �nd
that the developers have three choices to process the list which
make it vulnerable to DoS a�acks. �e �rst one is simply throwing
an exception that lead to application crash. �e second one is to
invoke bindService() or startService() with a null intent. �e third
one is to stop invoking the service. When running on Android 5.0
and higher, the �rst two choices will crash the app.

In total, we �nd that 55 service invocations could cause DoS
a�acks in the “New Apps”, where 28 applications are involved. In

addition, 53 invocations will cause application crash, and only 2
are choosing service ignorance. Among the 55 invocations, 24 are
caused by implicit service invocations, and other 31 are caused by
improper processing of the resolved service invocations. If invo-
cation of the service is triggered by entry point functions of an
exported component, such as onStart() of an exported Activity com-
ponent, the DoS a�acks could be carried out through manipulating
another cra�ed app. Otherwise, the DoS a�acks could only be
triggered when users make speci�c operations themselves in the
victim app, such as click a speci�c user interface.

4.4 Reasons for Implicit Invocation Residue
As described in Section 4.2, one major reason for the residue vul-
nerable service invocations is the di�culty on determining the
package names for the various third party services, which cause
more frequent usage of resolved service invocations in “New Apps”.
However, slow adoption of the forbidden policy is another impor-
tant reason for the residue vulnerable service invocations. For
example, 62 of the 112 vulnerable invocations are residue implicit
invoations, which include 28 Google services, 11 the same origin
services and 23 the other third party services. 79.03% residue ones
remain implicit since they are invoked through outdated SDKs or
the reuse of outdated sample codes, in which the services are in-
voked implicitly. �ere are some SDKs in which the services are
invoked implicitly in the latest versions. In this section, we give
a detailed analysis on the implicit invocations to help understand
the main reasons for these residue invocations, especially the in-
vocations targeting at the third party services, including Google
and the other services, which occupy 82.26% of the total residue
implicit service invocations.

We �nd that outdated SDKs and sample codes are two primary
reasons for the implicit invocations of Google services. Table 3
shows the 5 di�erent services involved for the 28 Google service in-
vocations. �e �rst and last columns depict the “Action” a�ributes
corresponding to the services and applications providing the
services, respectively. “Implicit Percentage” gives the percentage
of the implicit invocations among total ones for each service.
“Implicit Reason” shows the causes of the residue implicit service

Session E2: Securing Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1059

Table 3: Implicit Invocations of Google Services in “New Apps”.

Action Implicit Percentage Implicit Reason App Name
com.google.android.gms.* 6.9% Outdated SDKs Google Play Services

com.android.vending.billing.-
MarketBillingService.* 50% Misleading Sample Codes Google Play Store

com.android.vending.billing.-
InAppBillingService.* 1.15% Outdated Sample Codes Google Play Store

com.android.vending.licensing.* 54.55% Outdated SDKs Google Play Store
com.google.android.c2dm.* 1.17% Outdated SDKs Google Services Framework

invocations. For example, the Google Play Services invoked
through actions “com.google.android.gms.*” are pervasively
used by Android Apps, which contain many important Google
services and run as background services in the Android OS.
Google provides client libraries to interact with these background
services. However, in the client libraries of version 9, 10, and 18-21,
some services are invoked through implicit intents. Similarly,
implicit service invocation of “com.google.android.c2dm.*”
and “com.google.android.vending.licensing” are also
caused by outdated libraries. For the two billing services
“com.android.vending.billing.MarketBillingService.*” and
“com.android.vending.billing.InAppBillingService.*”, Google
provides sample codes dungeons and Trivial Drive to guide
developers on how to interact with them. In the out-
dated sample codes, implicit intents are used to invoked
these two services. �e sample codes used to invoke the
“com.android.vending.billing.MarketBillingService.*” service are
not even updated until May 01, 2017, which could explain the high
percentage (50%) for the implicit invocation of this service. In
addition, among the 23 implicit invocations for the other third party
services, 20 are caused by the outdated SDKs. For example, the most
frequent invoked service, “com.bda.controller.IControllerService” is
invoked through an SDK, and this service is still invoked implicitly
even in the latest SDK “controller-sdk-std-1.3.1”.

5 COUNTERMEASURES
Our analysis results show that the one-size-�ts-all forbidding solu-
tion cannot completely prevent the service hijacking a�acks. When
the system converts an implicit service invocation to an explicit
invocation, the ranking of the service list should not be manipu-
lated by a�ackers. We �rst propose an optimization to the ranking
rules for the implicit and resolved service invocations, which could
block about 90% vulnerable invocations without the a�endance
of the developers. �en, we propose a market-based service rank-
ing algorithm to increase the di�culty for a�acker to manipulate
the ranking of the service list. We also discuss two other coun-
termeasures, namely, signature-based service matching and SDK
hardening, where the signature-based service matching has been
adopted by developers and the SDK hardening may dramatically
reduce service hijacking a�acks by �xing a small number of popular
SDK/libraries.

Figure 8: Reduction Percentage with the Optimization

5.1 Optimization in Ranking Rules
As shown in Figure 5, before the forbidden policy is enforced, about
90% vulnerable invocations are targeting at the same origin and
Google third party services. Now, the forbidden solution gives the
responsibility of converting an implicit invocations to the explicit
ones to the developers. However, it is di�cult to control the behav-
iors of millions of developers. An optimization of the ranking rules,
i.e., giving higher priority to the same origin and Google services
when encountering an implicit or resolved service invocation, could
drastically reduce the service hijacking a�acks. In addition, it can
also mitigate the unresolved a�acks in the “New Apps”. Figure 8
shows that with the optimization enabled, 87.4% vulnerable service
invocations in the original “Old Apps” will be removed. In the
“New Apps”, the number of vulnerable invocations could also be
reduced by 44.64%, among which 72% are vulnerable to hijacking
a�acks. In addition, 8 a�acks in Table 2 could be blocked with this
optimization, including the 7 Google service invocations (i.e., 5
In-App Purchase services and 2 Google Messages services) and
the VPN Connecting service invocation by the “com.cisco.any*”
application (same origin service).

5.2 Market-Based Service Ranking
�e basic idea is to delegate the Android App markets such as
Google Play to evaluate the trustworthy of each application and
then give it a rank based on the market satisfaction. �en, when a
service is invoked implicitly, the service with the highest market
ranking will be chosen and returned by the system from the service

Session E2: Securing Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1060

list. For instance, Google Play Store provides three values to re�ect
users’ satisfaction on one application, namely, Download Number
(DN), Review Score (RS) and Review Number (RN). Download number
re�ects the popularity of an application. �e higher download
number, the higher of the application ranking. �e review score
and review number re�ect the users’ satisfaction on the application.

Our market-based service ranking approach calculates a ranking
score for each application using Equation 1.

Score =


ω ∗ DN

N
+
(1 − ω) ∗ RS ∗ RN

NR ∗ S , if RS ≥ σ

ω ∗ DN
N

+
(1 − ω) ∗ RS ∗ (N − RN)

NR ∗ S , otherwise
(1)

If the review score is higher than a threshold σ , a higher review
score and review number will generate a higher ranking score.
However, if the review score is lower than the threshold σ , a higher
review number means more users are not satis�ed on the applica-
tion, so a higher review number will lower the ranking score. We
use ω and 1-ω to weight the download number and the average
rating score, respectively. �e download number, review score, and
review number are normalized by the potential highest download
number, the largest review score, and the highest review number
of an application, marked as N, S, and NR in the equation. On the
Google Play market, N is set to 5,000,000,000, and S is set to 5. NR
could be obtained by Google. Our market-based service ranking
mechanism is more di�cult to be manipulated by the a�ackers,
since the critical values used in calculating the ranking score are
di�cult to be controlled by a�ackers. For example, hijacking of the
VPN Connecting service invoked by “com.zen*” will be di�cult, as
the apk (“Cisco Any Connect Client”) providing the service is very
popular (1,000,000 - 5,000,000 download number) and with high
rating score (4.2) and number (7072). Our approach requires Google
Play market to maintain a ranking score for each application, and
this score should be periodically updated.

5.3 Signature Based Service Veri�cation
Market-based service ranking mechanism works well when the de-
velopers have no idea which application or service provider should
be trustworthy. If the developer knows which provider of a spe-
ci�c service is trustworthy, a signature-based service veri�cation
can be adopted. �e developer can invoke queryIntentServices()
to get a list of services matching one implicit intent, and then
verify the signature of the applications providing the matching
services. Only applications provided by the speci�c providers can
be picked to make the intent explicit. �is solution provides the
�exibility when the developers know which provider is trusted
for providing a speci�c service, since it does not need the devel-
opers to upgrade their applications when the package name or
class name of the service has changed. Our experiment results
show that this solution has already been adopted by some apps.
For instance, a service provided by Amazon responding to the ac-
tion “com.amazon.identity.auth.device.authorization.*” is invoked
by 46 apps, and the service invocation method is implemented in
an Amazon SDK, which veri�es the signature of service provider
(i.e., Amazon) before invoking the service.

5.4 SDK Hardening
Since service invocation through an SDK wrapper is popular among
Android applications and the majority of remaining implicit service
invocations are caused by outdated SDKs, the hardening of SDKs
may dramatically reduce the number of implicit service invocations.
One way to hardening SDKs is to construct a trusted SDK list for
application developers to download the most updated SDK. Alter-
natively, an incentive mechanism may be developed to motivate
the SDK providers for actively updating their SDKs.

6 DISCUSSION
6.1 Accuracy of Static Analysis
�ere are two challenges that may have impacts on the accuracy of
our static analysis, i.e. accurately modeling of the Android frame-
work APIs [31] and accurately analyzing of string variables [27].
�e former is caused by the tremendous number and complexity of
the APIs and classes in the Android runtime library, and the later is
caused by the complexity of the application and string operations.
It will introduce huge overhead to accurately process all APIs and
strings, and sometime even cause the analysis into dead loop. In
this work, we focus on the Intent related framework APIs and string
operations. When encountering other framework APIs and string
operations, we simply record the value as the invocation of the
API. According to our results, we can get precise values for 99.52%
of intents, and the average time used to analyze an application is
only 50 seconds (including reachability analysis). However, the
average time of IC3 is 232 seconds for the 62% applications generate
results. One problem introduced by simplifying the modeling is
that we may not accurately determine the values for the condition
branch. To solve this, our solution records all potential values for
the intents in di�erent conditions.

To evaluate the accuracy of our static analysis tool, we manually
verify the implicit service invocations in the two datasets, which
include 300 and 62 direct implicit service invocations in the “Old
Apps” and “New Apps”, respectively. Among the 362 invocations,
we found that 353 were real implicit service invocations. �e 9
false positive implicit invocations could be classi�ed into two cate-
gories. First, the SDK version is considered in 7 invocations, and
the services will only be invoked implicitly when the SDK version
is less than 19 (i.e., Android 4.4) or 21 (i.e., Android 5.0), respec-
tively. In such case, the application still su�ers the service hijacking
a�acks when running on the low version Android system. Second,
2 false positive is due to false classi�cation of the package name
se�ing through the re�ection call of the setPackage() method, since
re�ection calls are not considered in our static analysis tool.

6.2 Accuracy of Reachability Analysis
Our static intent analyzer collects all services invocations through
�nding the bindService() or startService() calling points in
the apps; however, some calling points may reside in dead code that
will never run. �us, we develop the reachability veri�cation to ex-
clude those false positive. Similar to IC3 [33] and FlowDroid [4], our
tool cannot deal with the implicit data�ow of re�ection and some
callbacks, the runtime string values, and the encrypt calculation.
�us, our method may miss some reachable services invocations.
On the other side, since the execution logic of some applications are

Session E2: Securing Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1061

hard to be triggered [15, 42], we manually verify the reachability
of the vulnerable invocations.

7 RELATEDWORK
�ere are explosive researches on Android security, as shown in the
related survey [43], which includes not only the malware detection
and system protect mechanisms on di�erent Android so�ware stack
layers, but also ecosystem based research, such as repackaging
detection and prevention [7, 35, 38, 40, 40].

Component Hijacking Attacks. Component hijacking a�ack
has been discussed since 2011 in ComDroid [10]. CHEX [31] and
AppSealer [44] use static taint analysis to detect the privacy leakage
and privilege escalation caused by vulnerable exported components.
FlowDroid [4], Amandroid [41], IccTA [28], DroidSafe [23] provide
�ow-sensitive static analysis to detect privacy leaks on Android.
Later, HornDroid [8] is developed to provide be�er accuracy and
performance by directly working on smali code. Barros et al. [6]
develop a tool called Checker, which can resolve the re�ection
problem and Intent based implicit control �ow with the application
source codes are available. Alternatively, DroidRA [29] solves the
re�ection analysis using COAL solver [25]. HARVESTER [36] com-
bines program slicing with code generation and dynamic execution
to analyze the runtime values of the sensitive data during malware
analysis. TriggerScope [15] and IntelliDroid [42] improve the detec-
tion of hidden malicious logic to help detect malicious apps. In this
paper, we focus on service component hijacking a�acks and give
a systematic analysis. Since the Intent values are critical for the
component hijacking a�acks, Epicc [34] and IC3 [33] are two tools
to analyze Intent values. Particularly, as a successor of Epicc, IC3
reduces the intent value analysis into a composite constant prop-
agation problem and solves it with the COAL solver [25]. It can
extract the Intent values used by inter-component communication
(ICC) APIs. Unfortunately, our experiments show that IC3 fails to
generate results for about 38% applications we analyze.

Statistic Analysis of Android Apps. One reason for the ex-
plosive growth of Android application is the loose auditing mech-
anism adopted by Google Play Market. �erefore, whether the
developers works in a secure and rigorous approach will have a
signi�cant impact on the overall security of Android ecosystem.
Statistic Analysis has been adopted on several works to discover
the behaviors of the developers. Felt et al. [14] built an automated
testing tool named Stowawy and apply it to a set of 940 applica-
tions to detects whether Android developers follow least privilege
on the permission requests and found that one-third applications
are overprivileged. Enck et al. [13] conduct a static analysis on
1,100 popular free applications to discover the common security
problems in the applications, and �nd that many developers failed
to securely use Android APIs. Egele et al. [12] study whether the
developers use the cryptographic APIs in a secure fashion on 11,748
applications and �nd that 88% of them make at least one mistake.
Viennot et al. [39] perform a large measurement study on 1,100,000
applications crawled from the Google Play application store to un-
cover the characterization of the application content such as its
evolution over time, library usage etc. Lindorfer et al.[30] analyze
1,000,000 applications to discover the trends in malware behaviors
observed from applications. Afonso et al. [3] perform an analysis

of the native code usage in 1.2 million Android applications and
propose an automatic sandboxing policy for protecting native code.
McDonnell et al. [32] conduct a study to �nd the catching up rate
of developers when APIs evolve and �nd that about 28% of API
references are outdated with a median lagging time of 16 months.
In this paper, we conduct a study with a di�erent goal, which is to
�nd out the adoption trend of the one-size-�ts-all implicit service
forbidden solution among the application developers and �nd that
even the implicit service invocations had been forbidden for more
than two years, there are 64 applications still vulnerable to service
hijacking or DoS a�acks.

8 CONCLUSIONS
Because of service hijacking a�acks, the implicit service invocations
have been forbidden since Android 5.0. In this paper, we revisit
the service invocations and evaluate the impacts and e�ectiveness
of disabling implicit invocations by simply throwing an exception.
Our experiments show that a�er implicit service invocations had
been banned for 30 months, 36 popular applications still contain
codes vulnerable to service hijacking a�acks. Moreover, we �nd
that this one-size-�ts-all solution not only still su�ers from service
hijacking a�acks, but also introduces a new Denial of Service a�ack
on Android apps, and 28 applications are involved. Finally, we
propose a new ranking algorithm on selecting services invoked
through implicit intents to mitigate the remaining service hijacking
a�acks.

ACKNOWLEDGMENTS
We greatly appreciate the insightful comments and constructive
feedback from the anonymous reviewers. We would like to thank
Xianchen Meng for his work at the early stage of this project. �is
work is partially supported by U.S. O�ce of Naval Research un-
der Grant N00014-16-1-3214 and N00014-16-1-3216, the National
Key Research and Development Program of China under Grant
2016YFB0800102, the Natural Science Foundation of China under
Grants 61572278 and 61472165, Guangzhou Key Laboratory of Data
Security and Privacy Preserving, and Guangdong Provincial Key
Laboratory of Data Security and Privacy Preserving. �e corre-
sponding authors are Yuewu Wang and Qi Li.

REFERENCES
[1] 2014. PlayDrone Android Apps. h�ps://archive.org/details/android apps. (2014).
[2] 2017. Apktool:A tool for reverse engineering Android apk �les.

h�ps://ibotpeaches.github.io/Apktool/. (2017).
[3] Vitor Afonso, Antonio Bianchi, Yanick Fratantonio, Adam Doupé, Mario Polino,

Paulo de Geus, Christopher Kruegel, and Giovanni Vigna. 2016. Going Native:
Using a Large-Scale Analysis of Android Apps to Create a Practical Native-Code
Sandboxing Policy. In Proceedings of the Annual Symposium on Network and
Distributed System Security (NDSS).

[4] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
Flowdroid: Precise context, �ow, �eld, object-sensitive and lifecycle-aware taint
analysis for android apps. ACM SIGPLAN Notices 49, 6 (2014), 259–269.

[5] Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, Andreas Zeller,
Steven Arzt, Siegfried Rasthofer, and Eric Bodden. 2015. Mining apps for abnor-
mal usage of sensitive data. In Proceedings of the 37th International Conference on
So�ware Engineering-Volume 1. IEEE Press, 426–436.

[6] Paulo Barros, René Just, Suzanne Millstein, Paul Vines, Werner Dietl, Michael D
Ernst, et al. 2015. Static Analysis of Implicit Control Flow: Resolving Java
Re�ection and Android Intents (T). In Automated So�ware Engineering (ASE),
2015 30th IEEE/ACM International Conference on. IEEE, 669–679.

Session E2: Securing Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1062

[7] Sven Bugiel, Stephen Heuser, and Ahmad-Reza Sadeghi. 2013. Flexible and �ne-
grained mandatory access control on Android for diverse security and privacy
policies. In Presented as part of the 22nd USENIX Security Symposium (USENIX
Security 13). 131–146.

[8] Stefano Calzavara, Ilya Grishchenko, and Ma�eo Ma�ei. 2016. Horndroid: Prac-
tical and sound static analysis of android applications by smt solving. In Security
and Privacy (EuroS&P), 2016 IEEE European Symposium on. IEEE, 47–62.

[9] Qi Alfred Chen, Zhiyun Qian, and Zhuoqing Morley Mao. 2014. Peeking into
Your App without Actually Seeing It: UI State Inference and Novel Android
A�acks.. In USENIX Security, Vol. 14. 1037–1052.

[10] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. 2011.
Analyzing inter-application communication in Android. In Proceedings of the
9th international conference on Mobile systems, applications, and services. ACM,
239–252.

[11] Je�rey Dean, David Grove, and Craig Chambers. 1995. Optimization of object-
oriented programs using static class hierarchy analysis. In European Conference
on Object-Oriented Programming. Springer, 77–101.

[12] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel.
2013. An empirical study of cryptographic misuse in android applications. In
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security. ACM, 73–84.

[13] William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. 2011.
A Study of Android Application Security.. In USENIX security symposium, Vol. 2.
2.

[14] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner.
2011. Android permissions demysti�ed. In Proceedings of the 18th ACM conference
on Computer and communications security. ACM, 627–638.

[15] Yanick Fratantonio, Antonio Bianchi, William Robertson, Engin Kirda, Christo-
pher Kruegel, and Giovanni Vigna. 2016. Triggerscope: Towards detecting logic
bombs in android applications. In Security and Privacy (SP), 2016 IEEE Symposium
on. IEEE, 377–396.

[16] Christian Fritz, Steven Arzt, Siegfried Rasthofer, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2013. Highly
precise taint analysis for Android applications. EC SPRIDE, TU Darmstadt, Tech.
Rep (2013).

[17] Google. 2017. Android Application Fundamentals.
h�ps://developer.android.com/guide/components/fundamentals.html. (2017).

[18] Google. 2017. GooglePlay. h�ps://play.google.com/store/apps?hl=en. (2017).
[19] Google. 2017. Intents and Intent Filters.

h�ps://developer.android.com/guide/components/intents-�lters.html. (2017).
[20] Google. 2017. Service Component. h�ps://developer.android.com/guide/topics/manifest

/service-element.html. (2017).
[21] Google. 2017. Shared-Preferences:Saving Key-Value Sets. (2017).
[22] Google. 2017. Uses SDK Element in Android Application Manifest File.

h�ps://developer.android.com/guide/topics/manifest/uses-sdk-element.html.
(2017).

[23] Michael I Gordon, Deokhwan Kim, Je� H Perkins, Limei Gilham, Nguyen Nguyen,
and Martin C Rinard. 2015. Information Flow Analysis of Android Applications
in DroidSafe.. In NDSS. Citeseer.

[24] Johannes Ho�mann, Martin Ussath, �orsten Holz, and Michael Spreitzenbarth.
2013. Slicing droids: program slicing for smali code. In Proceedings of the 28th
Annual ACM Symposium on Applied Computing. ACM, 1844–1851.

[25] PSU SIIS Lab. 2014. coal solver. h�p://siis.cse.psu.edu/coal/. (2014).
[26] Ondřej Lhoták and Laurie Hendren. 2003. Scaling Java points-to analysis using

Spark. In International Conference on Compiler Construction. Springer, 153–169.
[27] Ding Li, Yingjun Lyu, Mian Wan, and William GJ Halfond. 2015. String analysis

for Java and Android applications. In Proceedings of the 2015 10th Joint Meeting
on Foundations of So�ware Engineering. ACM, 661–672.

[28] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon,
Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick
McDaniel. 2015. Iccta: Detecting inter-component privacy leaks in android apps.

In Proceedings of the 37th International Conference on So�ware Engineering-Volume
1. IEEE Press, 280–291.

[29] Li Li, Tegawendé F Bissyandé, Damien Octeau, and Jacques Klein. 2016. Droidra:
Taming re�ection to support whole-program analysis of android apps. In Pro-
ceedings of the 25th International Symposium on So�ware Testing and Analysis.
ACM, 318–329.

[30] Martina Lindorfer, Ma�hias Neugschwandtner, Lukas Weichselbaum, Yanick
Fratantonio, Victor Van Der Veen, and Christian Platzer. 2014. Andrubis–
1,000,000 apps later: A view on current Android malware behaviors. In 2014 �ird
International Workshop on Building Analysis Datasets and Gathering Experience
Returns for Security (BADGERS). IEEE, 3–17.

[31] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. 2012. Chex:
statically ve�ing android apps for component hijacking vulnerabilities. In Pro-
ceedings of the 2012 ACM conference on Computer and communications security.
ACM, 229–240.

[32] Tyler McDonnell, Baishakhi Ray, and Miryung Kim. 2013. An empirical study
of api stability and adoption in the android ecosystem. In So�ware Maintenance
(ICSM), 2013 29th IEEE International Conference on. IEEE, 70–79.

[33] Damien Octeau, Daniel Luchaup, Ma�hew Dering, Somesh Jha, and Patrick
McDaniel. 2015. Composite constant propagation: Application to android inter-
component communication analysis. In Proceedings of the 37th International
Conference on So�ware Engineering-Volume 1. IEEE Press, 77–88.

[34] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden,
Jacques Klein, and Yves Le Traon. 2013. E�ective inter-component communica-
tion mapping in android: An essential step towards holistic security analysis. In
Presented as part of the 22nd USENIX Security Symposium (USENIX Security 13).
543–558.

[35] Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi, Christopher Kruegel,
and Giovanni Vigna. 2014. Execute �is! Analyzing Unsafe and Malicious
Dynamic Code Loading in Android Applications.. In NDSS, Vol. 14. 23–26.

[36] Siegfried Rasthofer, Steven Arzt, Marc Miltenberger, and Eric Bodden. 2016.
Harvesting runtime values in android applications that feature anti-analysis
techniques. In Proceedings of the Annual Symposium on Network and Distributed
System Security (NDSS).

[37] �omas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise interprocedural
data�ow analysis via graph reachability. In Proceedings of the 22nd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. ACM, 49–61.

[38] Stephen Smalley and Robert Craig. 2013. Security Enhanced (SE) Android:
Bringing Flexible MAC to Android.. In NDSS, Vol. 310. 20–38.

[39] Nicolas Viennot, Edward Garcia, and Jason Nieh. 2014. A measurement study of
google play. In ACM SIGMETRICS Performance Evaluation Review, Vol. 42. ACM,
221–233.

[40] Ruowen Wang, William Enck, Douglas Reeves, Xinwen Zhang, Peng Ning,
Dingbang Xu, Wu Zhou, and Ahmed M Azab. 2015. EASEAndroid: automatic
policy analysis and re�nement for security enhanced android via large-scale
semi-supervised learning. In 24th USENIX Security Symposium (USENIX Security
15). 351–366.

[41] Fengguo Wei, Sankardas Roy, Xinming Ou, et al. 2014. Amandroid: A precise
and general inter-component data �ow analysis framework for security ve�ing
of android apps. In Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 1329–1341.

[42] Michelle Y Wong and David Lie. 2016. Intellidroid: A targeted input generator for
the dynamic analysis of android malware. In Proceedings of the Annual Symposium
on Network and Distributed System Security (NDSS).

[43] Meng Xu, Chengyu Song, Yang Ji, Ming-Wei Shih, Kangjie Lu, Cong Zheng, Ruian
Duan, Yeongjin Jang, Byoungyoung Lee, Chenxiong Qian, et al. 2016. Toward
Engineering a Secure Android Ecosystem: A Survey of Existing Techniques.
ACM Computing Surveys (CSUR) 49, 2 (2016), 38.

[44] Mu Zhang and Heng Yin. 2014. AppSealer: Automatic Generation of
Vulnerability-Speci�c Patches for Preventing Component Hijacking A�acks
in Android Applications.. In NDSS.

Session E2: Securing Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1063

	Abstract
	1 Introduction
	2 Background
	2.1 Service Components and Intents
	2.2 SDK Version
	2.3 Service Hijacking Attacks

	3 Methodology
	3.1 Preprocessor
	3.2 Static Intent Analyzer
	3.3 Reachability Verifier
	3.4 Vulnerable Service Invocation Analyzer

	4 Evaluation
	4.1 Android Application DataSets
	4.2 Effectiveness on Removing Vulnerable Service Invocations
	4.3 Vulnerable Service Invocations In ``New Apps"
	4.4 Reasons for Implicit Invocation Residue

	5 Countermeasures
	5.1 Optimization in Ranking Rules
	5.2 Market-Based Service Ranking
	5.3 Signature Based Service Verification
	5.4 SDK Hardening

	6 Discussion
	6.1 Accuracy of Static Analysis
	6.2 Accuracy of Reachability Analysis

	7 Related Work
	8 Conclusions
	Acknowledgments
	References

